39 Practice: Operations with Polynomials (6.4 – 6.7) — Intermediate Algebra

Answer keys located in next section.

6.4 Basic Operations Using Polynomials

For questions 1 to 8, simplify each expression using the variables given.

  1. -a^3 - a^2 + 6a - 21 \text{ when }a = -4
  2. n^2 + 3n - 11 \text{ when }n = -6
  3. -5n^4 - 11n^3 - 9n^2 - n - 5 \text{ when } n = -1
  4. x^4 - 5x^3 - x + 13 \text{ when } x = 5
  5. x^2 + 9x + 23 \text{ when } x = -3
  6. -6x^3 + 41x^2 - 32x + 11 \text{ when } x = 6
  7. x^4 - 6x^3 + x^2 - 24 \text{ when } x = 6
  8. m^4 + 8m^3 + 14m^2 + 13m + 5 \text{ when } m = -6

For questions 9 to 28, simplify the following expressions.

  1. (5p - 5p^4) - (8p - 8p^4)
  2. (7m^2 + 5m^3) - (6m^3 - 5m^2)
  3. (1 + 5p^3) - (1 - 8p^3)
  4. (6x^3 + 5x) - (8x + 6x^3)
  5. (5n^4 + 6n^3) + (8 - 3n^3 - 5n^4)
  6. (8x^2 + 1) - (6 - x^2 - x^4)
  7. (2a + 2a^4) - (3a^2 - 5a^4 + 4a)
  8. (6v + 8v^3) + (3 + 4v^3 - 3v)
  9. (4p^2 - 3 - 2p) - (3p^2 - 6p + 3)
  10. (7 + 4m + 8m^4) - (5m^4 + 1 + 6m)
  11. (3 + 2n^2 + 4n^4) + (n^3 - 7n^2 - 4n^4)
  12. (7x^2 + 2x^4 + 7x^3) + (6x^3 - 8x^4 - 7x^2)
  13. (8r^4 - 5r^3 + 5r^2) + (2r^2 + 2r^3 - 7r^4 + 1)
  14. (4x^3 + x - 7x^2) + (x^2 - 8 + 2x + 6x^3)
  15. (2n^2 + 7n^4 - 2) + (2 + 2n^3 + 4n^2 + 2n^4)
  16. (7b^3 - 4b + 4b^4) - (8b^3 - 4b^2 + 2b^4 - 8b)
  17. (8 - b + 7b^3) - (3b^4 + 7b - 8 + 7b^2) + (3 - 3b + 6b^3)
  18. (1 - 3n^4 - 8n^3) + (7n^4 + 2 - 6n^2 + 3n^3) + (4n^3 + 8n^4 + 7)
  19. (8x^4 + 2x^3 + 2x) + (2x + 2 - 2x^3 - x^4) - (x^3 + 5x^4 + 8x)
  20. (6x - 5x^4 - 4x^2) - (2x - 7x^2 - 4x^4 - 8) - (8 - 6x^2 - 4x^4)

 

6.5 Multiplication of Polynomials

Find each product.

  1. 6(p - 7)
  2. 4k(8k + 4)
  3. 2(6x + 3)
  4. 3n^2(6n + 7)
  5. (4n + 6)(8n + 8)
  6. (2x + 1)(x - 4)
  7. (8b + 3)(7b - 5)
  8. (r + 8)(4r + 8)
  9. (3v - 4)(5v - 2)
  10. (6a + 4)(a - 8)
  11. (5x + y)(6x - 4y)
  12. (2u + 3v)(8u - 7v)
  13. (7x + 5y)(8x + 3y)
  14. (5a + 8b)(a - 3b)
  15. (r - 7)(6r^2 - r + 5)
  16. (4x + 8)(4x^2 + 3x + 5)
  17. (6n - 4)(2n^2 - 2n + 5)
  18. (2b - 3)(4b^2 + 4b + 4)
  19. (6x + 3y)(6x^2 - 7xy + 4y^2)
  20. (3m - 2n)(7m^2 + 6mn + 4n^2)
  21. (8n^2 + 4n + 6)(6n^2 - 5n + 6)
  22. (2a^2 + 6a + 3)(7a^2 - 6a + 1)
  23. (5k^2 + 3k + 3)(3k^2 + 3k + 6)
  24. (7u^2 + 8uv - 6v^2)(6u^2 + 4uv + 3v^2)
  25. (2n^3 - 8n^2 + 3n + 6)(n^3 - 6n^2 - 2n + 3)
  26. (a^3 + 2a^2 + 3a + 3)(a^3 + 2a^2 - 4a + 1)
  27. 3(3x - 4)(2x + 1)
  28. 5(x - 4)(2x - 3)
  29. 3(2x + 1)(4x - 5)
  30. 2(4x + 1)(2x - 6)

6.6 Special Products

Find each product.

  1. (x + 8)(x - 8)
  2. (a - 4)(a + 4)
  3. (1 + 3p)(1 - 3p)
  4. (x - 3)(x + 3)
  5. (1 - 7n)(1 + 7n)
  6. (8m + 5)(8m - 5)
  7. (4y - x)(4y + x)
  8. (7a + 7b)(7a - 7b)
  9. (4m - 8n)(4m + 8n)
  10. (3y - 3x)(3y + 3x)
  11. (6x - 2y)(6x + 2y)
  12. (1 + 5n)^2
  13. (a + 5)^2
  14. (x - 8)^2
  15. (1 - 6n)^2
  16. (4x - 5)^2
  17. (5m - 8)^2
  18. (3a + 3b)^2
  19. (5x + 7y)^2
  20. (4m - n)^2
  21. (5 + 2r)^2
  22. (m - 7)^2
  23. (4v - 7)(4v + 7)
  24. (b + 4)(b - 4)

 

License

Share This Book